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Abstract The spatial resolution of eigenfunctions of Sturm–Liouville equations in one-dimension is
frequently measured by examining the minimum distance between their roots. For example, it is well
known that the roots of polynomials on finite domains cluster like O(1/N2) near the boundaries. This tech-
nique works well in one dimension, and in higher dimensions that are tensor products of one-dimensional
eigenfunctions. However, for non-tensor-product eigenfunctions, finding good interpolation points is much
more complicated than finding the roots of eigenfunctions. In fact, in some cases, even quasi-optimal
interpolation points are unknown. In this work an alternative measure, �, is proposed for estimating the
characteristic length scale of eigenfunctions of Sturm–Liouville equations that does not rely on knowledge
of the roots. It is first shown that � is a reasonable measure for evaluating the eigenfunctions since in
one dimension it recovers known results. Then results are presented in higher dimensions. It is shown
that for tensor products of one-dimensional eigenfunctions in the square the results reduce trivially to the
one-dimensional result. For the non-tensor product Proriol polynomials, there are quasi-optimal interpo-
lation points (Fekete points). Comparing the minimum distance between Fekete points to � shows that �

is a reasonably good measure of the characteristic length scale in two dimensions as well. The measure
is finally applied to the non-tensor product generalized eigenfunctions in the triangle proposed by Taylor
MA, Wingate BA [(2006) J Engng Math, accepted] where optimal interpolation points are unknown. While
some of the eigenfunctions have larger characteristic length scales than the Proriol polynomials, others
show little improvement.
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1 Introduction

Because of their spectral convergence properties, Legendre and Chebyshev polynomials are the basis of
choice for non-periodic, finite domains for pseudospectral methods. However, these polynomials have
higher resolution near the boundaries than their Fourier-series counterparts. The term resolution usually
connotes the minimum distance between their N associated collocation points that are the roots of either
the Nth degree polynomial for Gauss points or the roots of the derivative of the N + 1 polynomial for
Gauss–Lobatto points. It is well known that these points cluster near the boundary creating a minimum
spacing for N points of O(1/N2), while for trigonometric polynomials (Fourier Series) of degree N the
points are equally spaced with minimum spacing O(1/N) [1]. As a consequence, when approximating
time-dependent partial differential equations with these polynomials, as N increases the time step limit
is markedly better for the Fourier series in a periodic domain than for the Legendre polynomials on the
finite interval.

Improving the minimum resolution length of eigenfunctions makes prolate spheroidal wave functions
(PSWFs), which have a long history in signal processing [2], interesting. Because of their more uniform
resolution on the finite interval, Xiao et al. [2] suggested them as an alternative to polynomials. In one
dimension, PSWFs are a one-parameter family of orthogonal functions in the interval. These are the eigen-
functions of a Sturm–Liouville equation with a bandwidth parameter, c. For c = 0, they are the Legendre
polynomials. For larger c, their Gauss–Lobatto points are more equally spaced, indicating they oscillate
more uniformly than the Legendre polynomials. For time-dependent partial differential equations with
explicit time stepping algorithms this leads to a larger maximum allowable time step [2–4]. When c > c∗,
where c∗ = (π/2)(N +1/2) is the transition bandwidth, PSWFs exhibit a “dead-zone” [3] where the PSWFs
oscillate and have exponentially small amplitudes near the endpoints of the domain. The resolution length
of PSWFs in one dimension can easily be estimated by computing the minimum distance between their
roots.

In dimensions greater than one, analyzing the characteristic length scales is more difficult. In quadrilat-
eral domains, it is sensible to use tensor-product combinations of one-dimensional eigenfunctions combined
with a tensor-product of collocation points. In this case, the one-dimensional theory can be applied directly.
In non-tensor-product domains, such as the triangle, analyzing the resolution properties of eigenspaces
generated by solving Sturm–Liouville equations is more complex. One cannot generate points from the
zeros of the Nth eigenfunction, since there is not a single unique eigenfunction of degree N, and the zeros
are now curves instead of points. Suitable interpolation points for these eigenspaces have to be found with
numerical optimization [5–7].

We analyze the characteristic length scales of the eigenfunctions of Sturm–Liouville problems by using
a measure, denoted by �, based on the norm of the derivative operator. We first show that this measure
recovers many of the results for one-dimensional polynomials and PSWFs that were previously obtained
by examining the minimum distance between their roots. We then apply this measure in two dimensions.
We first show that the case of tensor products of one-dimensional eigenfunctions trivially reduce to the
one-dimensional results. We then move to the triangle where the eigenfunctions are non-tensor products.
First, we compare the characteristic length scale of the Proriol [8–10] polynomials to the minimum distance
between their Fekete points (quasi-optimal interpolation points). Then, we apply the measure to these
generalized eigenfunctions on the triangle proposed in [11], where near-optimal interpolation points are
unknown. The measure � indicates that the eigenspaces of the generalized eigenfunctions have larger
characteristic length scales than their polynomial counterparts for some eigenfunctions, but retain small
characteristic length scales for others.

The ability to study the resolution properties of an eigenspace without making use of optimal inter-
polation points is important for domains such as the triangle where such points are not readily known.
An analysis using sub-optimal interpolation points can easily give results polluted by interpolation errors
arising from the sub-optimal points, such as the well known Runge phenomenon. Therefore it is important
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to have a method of estimating the characteristic length scales of the eigenfunctions that does not require
the use of optimal interpolation points.

2 Computing generalized eigenfunctions of Sturm–Liouville equations

Since we apply the measure of characteristic length scales to polynomial approximations of the eigenfunc-
tions of Sturm–Liouville equations, we briefly discuss their computation. For details about this approxima-
tion, see the cited literature.

Closed-form analytic expressions for the PSWFs in one-dimension and the generalization of the Pro-
riol polynomials in two dimensions are not known. Instead, they are usually computed by assuming a
polynomial expansion and then solving for the expansion coefficients.

The domains we will use are: X = {x | − 1 ≤ x ≤ 1} on a line, X2 = {(x, y) | − 1 ≤ (x, y) ≤ 1} on a square,
and T2

r = {(x, y)| − 1 ≤ x, y; x + y + 1 ≤ 1} on a right triangle. In X, the equations for the polynomial
expansion coefficients can be solved analytically [2, 3, 12, 13] and in T2

r they have been solved numerically
in [11]. In both cases, the residual of the Sturm–Liouville equation will decrease exponentially fast as
the number of terms in the polynomial truncation is increased [11], and thus the truncated polynomial
approximation can be made very accurate. In [3], it is shown that in X, using M = 30 + 2N obtains an
accuracy of 10−20.

In X, the PSWFs are the eigenfunctions of the Sturm–Liouville equation,
d

dx
(1 − x2)

d
dx

φc
n(x) + (λn − c2 x2) φc

n(x) = 0, x ∈ X, φc
n ∈ H2

2(X), (1)

where c is the bandwidth parameter, H2
2(X) is the Hilbert space of twice-differentiable square-integrable

functions on the real line, X, φc
n(x) is the eigenfunction, and λn are the eigenvalues.

To solve this eigenvalue problem, we approximate the PSWF φc
n with a series of orthonormal poly-

nomials. Let PM = span{(xm) | 0 ≤ m ≤ M} be the space of polynomials in x up to degree M, and let
{gm(x), m = 0 . . . M} be an orthonormal basis for PM. We denote the expansion coefficients of φc

n by ̂(φc
n)m,

so that

φc
n ≈

M
∑

m=0

̂(φc
n)m gm. (2)

As many investigators have pointed-out, M > N is required for an accurate representation of φc
n. For details

about computing polynomial approximations to PSWFs, see [2, 3, 12]. In this work, all one-dimensional
results are computed using the Maple(TM)1 symbolic manipulation software and taking M = 30+3N. For
the cases examined in this paper, this truncation is good enough to compute �sv, introduced in Sect. 4, to
within three decimal places.

In X2, the square, we use tensor-product combinations of the one-dimensional eigenfunctions described
above.

For T2
r , a generalization of the one-dimensional Sturm–Liouville equation was given in [11] as,
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1 Maple is a trademark of Waterloo Maple Inc.
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Here H2
2(T2

r ) is the Hilbert space of twice-differentiable functions that are square-integrable in T2
r . Again,

we denote φc
n(x, y) as the eigenfunctions and λn as the eigenvalue. When c = 0, the eigenfunctions of this

equation are the Proriol polynomials.
To solve this eigenvalue problem, we approximate the eigenfunctions with a series of M +1 polynomials

in the space of polynomials in two variables of degree d, PM = {span(xmyn) | 0 ≤ (m, n), m + n ≤ d).
The dimension of this space is M + 1 = (d + 1)(d + 2)/2. We denote an orthonormal basis of PM by
{gm(x, y), m = 0 . . . M} and expand the eigenfunctions as,

φc
n ≈

M
∑

m=0

̂(φc
n)m gm. (5)

For good accuracy, M > N is required. Following [11] we choose M large enough so that the residual of
Eq. 3 is less than 10−10.

Finally, we denote the N + 1 dimensional eigenspace by PN,c, where

PN,c = span{φc
n, 0 ≤ n ≤ N}.

Note that the Sturm–Liouville equations are self-adjoint, so their eigenfunctions are orthogonal in the
usual L2 norm,

‖f‖2 =
∫

f 2,

where the integration is over X, X2 or Te. In this paper, ‖·‖ will represent this L2 norm, and the eigenfunc-
tions φc

n are normalized so that ‖φc
n‖ = 1.

3 Characteristic length scales of Sturm–Liouville eigenfunctions, φc
n

Let f be a differentiable function and define the characteristic length scale, l(f ), in the x-direction to be

�(f ) = ||f ||
||∂f/∂x|| . (6)

This length scale is a measure of the variation of the gradient of the function. It is commensurate with the
idea that the higher the oscillations of the function, the steeper the gradient, and subsequently, the smaller
the length scale. For example the Nth degree Fourier function has N troughs, N peaks, and can represent
a wave number N solution on a periodic domain exactly.

As an example of computing the characteristic length scale of eigenfunctions without using optimal
interpolation points, we consider the simple case of the Fourier series by examining its Sturm–Liouville
equation,

d2

dx2 φn(x) + λn φn(x) = 0, 0 ≤ x ≤ 2π , φn(x) ∈ SN , (7)

where SN is the space of trigonometric polynomials of degree N/2 defined as, SN = span{einx | −N/2 ≤
n ≤ N/2 − 1}. Multiplying (7) through by φn and integrating over the domain, we find

λn = ||∂φn/∂x||2
||φn||2 . (8)

From (6) and since λn = n2, �(φn) = 1/n.
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4 Minimum characteristic length scale of PN,c

We now define a minimum characteristic length scale for the space PN,c by considering the minimum length
scale of all functions f ∈ PN,c,

�sv = min
f∈PN,c

�(f ) = min
f∈PN,c

‖f‖
‖∂f/∂x‖ (9)

and thus
1

�sv
= max

f∈PN,c

‖∂f/∂x‖
‖f‖ = ‖∂/∂x‖, (10)

where ‖∂/∂x‖ is the L2 operator norm of the derivative operator in the x direction acting on PN,c. Though
we have two directions in the square and triangle (both x and y), we keep the one-dimensional measure
for simplicity by examining �sv in one direction at a time. We denote �sv in the x-direction as ‖∂/∂x‖−1 and
in the y-direction as ‖∂/∂y‖−1.

The length scale �sv is easily computed by taking the largest singular value of a properly constructed
matrix B. To compute B, we start with the expansion of an arbitrary function f ∈ PN,c

f =
N

∑

n=0

f̂nφc
n. (11)

Now consider the polynomial expansions of φc
n from either Eq. 2 or Eq. 5. Under this approximation, φc

n
is a polynomial in PM, so its derivative is also a polynomial in PM and thus

∂φc
n

∂x
=

M
∑

m=0

Bmngm Bmn =
∫

∂φc
n

∂x
gm.

We note that care must be taken in computing the derivatives of polynomial approximations to eigenvalue
problems [14, 15]. Applying ∂/∂x to (11) gives
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M
∑

m=0

Bmngm =
M
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N
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)

gm.

Applying Parseval’s theorem to this equation and to (11) gives

‖f‖2 =
N

∑

n=0

f̂ 2
n









∂f
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2

=
M

∑

m=0

(

N
∑

n=0

Bmnf̂n

)2

.

Substituting these relations in (10) gives

‖∂/∂x‖ = max
f∈PN,c

(

∑M
m=0

(

∑N
n=0 Bmnf̂n

)2
)1/2

(

∑N
n=0 f̂ 2

n

)1/2
,

where the right-hand side is simply the discrete L2 norm of the rectangular matrix Bmn, which is given by
the largest singular value of Bmn. Thus, we have shown that

1
�sv

= max sv(Bmn).

The advantage of this approach is that the minimum characteristic length scale of the eigenspace PN,c can
be measured by simply computing the largest singular value of the matrix Bmn. Computing this matrix
requires only evaluating inner products of polynomials.
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5 Results

In this section, we present both one- and two-dimensional results. First, we apply � and �sv to the
one-dimension PSWFs and show that they reproduce known results. Next, we examine the tensor-
product generalizations of one-dimensional eigenfunctions, and show they trivially reduce to the one-
dimensional results. Then, in T2

r , we compare �sv to the minimum distance between their Fekete points
(quasi-optimal interpolation points) and show that �sv can estimate the characteristic length scale just as in
the one-dimensional case. Lastly, we apply the measure to the generalized eigenfunctions on the triangles
where optimal interpolation points are unknown.

5.1 � and �sv in one-dimension

We investigate the behavior of � and �sv in one-dimension for the purpose of showing they are a reasonable
means of assessing the characteristic length scales of eigenfunctions of Sturm–Liouville problems.

Figure 1 shows the results in one dimension. Panel (a) shows a graph of �/�eq = �(φc
n)/�eq versus c for

values of N ranging from 4 (top curve) to 9 (bottom curve). The measure is normalized by the length scale
associated with uniform resolution, �eq = 1/(N + 1). Panel (b) is similar to panel (a) except that �sv/�eq is
represented on the vertical axes instead of �/�eq. Panel (c) shows both length scales versus c/c∗ where c∗ is
the transition bandwidth. These three panels show a rapid increase in the length scale in the neighborhood
of c/c∗ ≈ 3/4. As �(φc

n)/�eq and �sv/�eq approach unity, the mean resolution of φn approaches that of a
function which oscillates uniformly. The most uniform length scales, then, occur at c/c∗ ≈ 1.

As c/c∗ becomes large, the length scales become small, revealing the “dead-zone”. As is evident in panel
1 (c), �sv/�eq provides a lower bound for �/�eq, as expected.

Panel 1 (d) shows a log–log plot of the length scale �sv versus N for five values of c/c∗. For c/c∗ = 0, the
slope is shallower than O(1/N2), the minimum distance between Gauss–Lobatto collocation points. This
is not surprising since �sv is an average measure of the characteristic length scale, rather than a minimum.
It also shows that the rate of decrease of the characteristic length scale is somewhat slower for c/c∗ = 1
than it is for c/c∗ = 0.

Previous investigators have found these results by examining waterfall plots of the PSWFs [3] or through
asymptotic expansions [16, 17]. We conclude we may use this measure as a way of estimating the resolution
properties of PSWFs and proceed to present two-dimensional results.

5.2 � and �sv in two dimensions

We begin with the tensor-product generalizations on the square. Then, we look at non-tensor-product
eigenfunctions, Proriol polynomials, in the triangle and compare �sv with the minimum spacing between
Fekete points, which are quasi-optimal interpolation points. Lastlyç, we examine � and �sv for non-polyno-
mial generalizations of the Proriol eigenfunctions where even quasi-optimal interpolation points are not
known.

5.2.1 Tensor products of PSWFs on the square

For squares, tensor products of one-dimensional eigenfunctions are commonly used. In this case we write
the function, f , as,

f = φc
n(x) φc

m(y) ∈ X2, (12)

where φc
i are the eigenfunctions of the Sturm–Liouville problem in Eq. 1. By substituting f in the definition

of �(f ), we see that �(f ) reproduces the one-dimensional results.
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(a) (b)

(d)(c)

Fig. 1 (a) shows a graph of �/�eq versus c for different maximum degrees of the PSWF in one dimension. The top curve
is for the PSWF of maximum degree N = 4, then increases in N until it reaches N = 9. The measure is normalized by
�eq = 1/(N + 1), the length scale associated with uniform resolution. (b) is similar to (a) except that �sv/�eq is represented on
the vertical axes instead of �/�eq. (c) shows both �/�eq and �sv/�eq, versus c/c∗ where c∗ is the transition bandwidth. These
three panels show a rapid increase in the length scale in neighborhood of c/c∗ ≈ 3/4. As �/�eq and �sv/�eq approach 1, their
resolution approaches that of a function which oscillates uniformly. The most uniform length scales, then, occur at c/c∗ ≈ 1.
As c/c∗ becomes large, the length scales become small, revealing the “dead-zone”. (d) shows a log–log plot of �sv versus N
for five different values of c/c∗. For c/c∗ = 0 the slope is a little shallower than O(1/N2), the minimum distance between
Gauss–Lobatto collocation points. When c/c∗ ≈ 1 the slope is even shallower, showing that �sv is larger at higher degrees of
N than the c/c∗ = 0 case

5.2.2 Proriol eigenfunctions on the triangle

One of the motivations for proposing the measures � and �sv of the characteristic length scale of eigen-
functions is that assessing their resolution properties by using roots of the eigenfunctions is sometimes
impossible in higher dimensions. For non-tensor-product eigenfunctions, finding good interpolation points
is more difficult than finding the roots of the eigenfunctions. First, for each eigenvalue there is no longer
a unique eigenfunction. Instead, there is a family of eigenfunctions for each eigenvalue. Second, the zeros
of the eigenfunctions are curves in space, not points. Therefore, we rely on numerically computed, quasi-
optimal interpolation points, such as Fekete [5, 7] or electrostatic [6] points. However, in order to assess
whether �sv does a reasonably good job in two dimensions, we compare it to the minimum spacing between
Fekete points. Figure 2 shows a plot of �sv computed for the Proriol polynomials, compared to the measure
of the minimum spacing between their Fekete points. The minimum distance between Fekete points is
noisy at higher degrees because Fekete points are numerically computed and only approximately optimal.
However, they give a distribution that is generally shallower than the square of the degree, while �sv is
shallower still. This result is similar to the one-dimension case shown in Fig. 1(d).

5.2.3 Generalized eigenfunctions on the triangle

We now show results of applying this measure to the eigenspaces Pc
N generated by the Sturm–Liouville

equation in the triangle. Figure 3 shows our results for N = 9. In this case, we show the length scale of the
eigenfunctions with the 10 largest eigenvalues. For c = 0, these are the 10 Proriol polynomials of highest
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Fig. 2 This figure compares the minimum distance between
Fekete points for the Proriol polynomials (top line) with the
measure �sv (middle line). The minimum distance between
Fekete points has roughly slope 2 (the lower line), while
the characteristic length, �sv, has a shallower slope. This
result is similar to the one-dimensional case for c/c∗ = 1 in
Fig. 1(d)
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Fig. 3 The length scale �(φc
n) of the 10 eigenfunctions with

largest eigenvalues in P55,c is shown. Circles are used for the
length scale in the x-direction and crosses for the y direc-
tion. The solid line shows ‖∂/∂x‖−1 and ‖∂/∂y‖−1 which
agree to within roundoff error. Leq = 1/(N+1) is the length
scale associated with a uniform distribution of points along
a line. For the case shown above the dimension of the space
is (N + 1)(N + 2)/2 = 55, since N = 9

degree nine. We show the length scale in both the x- and y-direction, as well as �sv. We have normalized the
length scales by the length scale associated with equally spaced points on the line, Leq = 1/(N + 1). The
length scale in other directions produces similar results. While some eigenfunctions exhibit an increase in
the characteristic length scale, the increase is not as proportionally large as in the one-dimensional PSWFs.
More importantly, other eigenfunctions show no increase in their characteristic length scale. This suggests
that for some values of c, the eigenspace PN,c contains modes with more uniform resolution and thus
should better approximate functions such as sinusoids then c = 0, confirming the numerical results in [11].
But it also suggests that the space retains some of the modes with length scales as small as in the c = 0
case, suggesting that criteria sensitive to the minimum length scales (such as the CFL restriction on the
time step) will not be improved.

6 Concluding remarks

The characteristic length scales of non-tensor-product eigenfunctions cannot usually be measured by exam-
ining the minimum distance between their roots. Furthermore, quasi-optimal interpolation points for these
kinds of eigenfunctions are frequently unknown. In this paper, we have used an integral measure of the
characteristic length scale, �, to estimate their resolution properties. This measure has the advantage of
not requiring a set of quasi-optimal interpolation points. We have shown that this measure reproduces
one-dimensional results for PSWFs and two-dimensional results for Proriol polynomials, making it a can-
didate measure for eigenfunctions whose optimal interpolation points are not known. Finally, we applied
this measure to the generalized eigenfunctions proposed by [11]. In this measure, the eigenspace contains
some functions with more uniform resolution than the Proriol polynomials, but at the same time retains
some eigenfunctions that have length scales as small as those contained in the Proriol polynomials.
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